Revista
Autores: Marco Tallarico y Hyun-Kyung Park
El titanio ha sido ampliamente utilizado para la restauración y reconstrucción dental y ortopédica debido a su biocompatibilidad, resistencia a la corrosión y propiedades mecánicas. El titanio se oxida fácilmente, formando una capa delgada (1-5 nm), estable y pasiva que es autolimitada y protege la superficie del metal de una mayor oxidación [1]. Se considera que esta capa superficial de dióxido de titanio (TiO2) es responsable de su rendimiento biológico efectivo debido a la transferencia de iones de calcio y fósforo de la matriz ósea dentro de la capa de TiO2 [2]. Sin embargo, con el tiempo se producen reducciones significativas en la osteointegración y otras capacidades biológicas del titanio a medida que aumenta el carbono en la superficie debido a una deposición inevitable de carbono de la atmósfera en la capa de TiO2 en forma de hidrocarburo [3]. Este fenómeno se define como el envejecimiento biológico del titanio, y la capacidad de las superficies de titanio para atraer proteínas y células osteogénicas disminuye de manera dependiente del tiempo [4]. Otro cambio notable en las superficies de titanio con el tiempo es la desaparición de la hidrofilicidad. Inmediatamente después del procesamiento, las superficies de titanio exhiben un ángulo de contacto con el agua de 0 o menos de 5 grados, y dichas superficies se denominan superhidrofílicas [4-7]. Esta característica se atenúa gradualmente y se vuelve hidrofóbica en 2 y 4 semanas, con un ángulo de contacto superior a 40 y 60 grados, respectivamente. El tratamiento de superficie se utiliza para modificar la topografía y la energía superficial de los implantes dentales, lo que resulta en una mejor humectabilidad, una mayor proliferación y crecimiento celular y una osteointegración acelerada [1,8,9]. El tratamiento de la superficie se puede lograr mediante una técnica aditiva o sustractiva [9]. La técnica sustractiva elimina o hace rugosa una capa de material central, como se caracteriza por una superficie arenada y grabada con ácido (SA). En la técnica adictiva, otros materiales o agentes químicos se agregan superficialmente a la superficie del titanio a través del recubrimiento, como la pulverización de plasma de titanio, el recubrimiento de hidroxiapatita, el recubrimiento de fosfato de calcio y otros recubrimientos biomiméticos. La perforación antes de la colocación del implante hace que el tejido óseo sufra un traumatismo similar a una fractura. El sitio se vuelve relativamente hipóxico y el pH extracelular se vuelve ácido. En tales condiciones, las células estromales de la médula ósea exhiben una actividad reducida de fosfatasa alcalina (ALP) y síntesis de colágeno, las cuales son importantes en la formación ósea y la osteointegración [10]. También se ha descubierto que la glucólisis y la síntesis de ADN de los osteoblastos se ven afectadas por las condiciones ácidas [11]. La agregación plaquetaria, que es un paso crítico en la formación de coágulos sanguíneos o trombogénesis, también se reduce por la acidosis extracelular, mediada por la vía de entrada de iones de calcio [12]. La formación de un coágulo de sangre suficiente ofrece un enlace directo y estable en la interfaz hueso-implante y desempeña un papel importante en las respuestas trombogénicas y la osteointegración [13]. Además, se encontró una relación entre varias superficies del implante y la extensión del coágulo de fibrina [14]. En nuestro estudio anterior, se introdujo una nueva superficie SA recubierta con un agente amortiguador del pH después del tratamiento con vacío-UV (VUV) [15,16]. Esta superficie se asoció estrechamente con una mayor afinidad por las proteínas, las células y las plaquetas, lo que promovió una coagulación sanguínea rápida y estable, trombogénesis y osteointegración. El propósito del presente estudio fue evaluar y comparar la humectabilidad de la superficie y la capacidad de coagulación de la sangre de varias superficies de implantes, incluida una superficie SA convencional (SA), una superficie SA con tratamiento VUV (SA + VUV) y una superficie SA recubierta con un agente amortiguador de pH después del tratamiento VUV (SA + VUV + BS), mediante análisis in vitro e in vivo.
2.1. Preparación de los implantes
Se prepararon implantes de titanio comercialmente puro (grado IV) como SA, SA + VUV (TS III SA, Osstem, Seúl, Corea) y SA + VUV + BS (TS III SOI, Osstem) para su uso en este estudio. Como se muestra en la Figura 1a,b, se midió que la rugosidad de la superficie de los accesorios del implante era de 2,5 ± 0,5 μm del valor de Ra [15], y el tratamiento VUV para la fotofuncionalización se logró exponiendo un accesorio del implante a lámparas de arco de mercurio de baja presión que emiten UVC y VUV en el limpiador de ozono UV durante 1 h. El recubrimiento de la superficie del implante con un agente amortiguador de pH, compuesto por grupos iónicos cargados positiva y negativamente, con un valor de pKa de 7,31 a 37 ºC [15,16], se complementó para una mejor superhidrofilia (Figura 1c).
2.2. Ensayos in vitro
2.2.1. Humectabilidad estática de la superficie
La sangre de oveja heparinizada llenó un plato de 3,5 cm de diámetro a una profundidad de 2 a 3 cm.
Los accesorios de implante de SA + VUV y SA + VUV + BS (n = 5, respectivamente) se sumergieron en sangre hasta la interrupción superior de las roscas apicales, y se registró el tiempo hasta llegar a la parte superior del implante para calcular la velocidad de humectación. El tiempo no se contabilizó desde el ápice del implante, ya que la presencia de discontinuidad de las roscas apicales hizo que la absorción de sangre se detuviera bruscamente.
2.2.2. Humectabilidad dinámica de la superficie
Para simular las situaciones clínicas de la instalación de la fijación del implante, se realizaron orificios en una placa acrílica transparente para asegurar la visibilidad, de acuerdo con el protocolo de fresado del fabricante para la densidad ósea dura utilizando el 122 Taper Kit (Osstem). Se colocó una muestra de 130 μM de sangre de oveja desfibrinada en cada orificio de la placa acrílica, y los accesorios de implante de SA + VUV y SA + VUV + BS (n = 5, respectivamente) se sumergieron en el orificio mediante un dispositivo de empuje y tracción (MX-500N, Imada Co., Tokio, Japón) a una velocidad de 50 mm/min (MX-500N, Imada Co., Tokio, Japón), y se registraron los tiempos en que la sangre alcanzó hasta los puntos de 2 mm y 4 mm del eje central del implante por encima de la placa horizontal (Figura 2).[...]
(artículo patrocinado by Osstem)
También puede consultar el número 87 de DM El Dentista Moderno.
El laboratorio ha sido reconocido como finalista en los Advanced Dentistry Awards 2025 del Barcelona Dental Show (BDS) en la categoría de “Laboratorio Más Innovador”, subrayando su liderazgo en la transformación digital del sector de entre más de 80 candidaturas.
El documento es una herramienta de referencia para las empresas de tecnología sanitaria, hospitales, centros de salud y servicios de soporte, que recoge las recomendaciones de la patronal europea COCIR.
El proyecto tiene el objetivo de concienciar sobre la importancia de mantener una buena salud oral durante la gestación y ha contado con la colaboración de la Asociación Española de Matronas y de Lacer.
Se trata de una solución digital que permite atender a los pacientes mediante voz, con un diálogo natural y sencillo, durante todos los días del año sin limitación de horarios.
La presidenta de la Sociedad Científica Española de Láser y Fototerapia (SELO) y referente internacional en odontología láser ha dirigido jornada formativa en Nueva Delhi dirigida a profesionales odontólogos de diversas nacionalidades y centrada en el uso clínico del láser y la técnica de fotobiomodulación.
El Dr. Didier Delmas, director en Delmas Clinic, nos explica, desde su visión como especialista en Implantología Oral y Prótesis sobre Implantes, los cambios y ventajas que ofrece el flujo digital para la conexión y comunicación de la clínica con el laboratorio dental, así como dentro de la propia clínica dental.
Desde Centro Odontológico Granada nos cuentan cómo se implementa el flujo digital integral entre la clínica y el laboratorio dental y las ventajas que conlleva.
El IV Simposio de Traumatología Dentoalveolar tendrá lugar los días 19 y 20 de septiembre en la sede del Colegio de Médicos de Almería, donde afrontará las últimas técnicas de traumatología en dentición definitiva y en temporal.
La investigación analiza las causas por las que los niños y niñas con TDAH presentan peores indicadores de salud bucodental, incluyendo más caries, más extracciones y más sangrado de encías.